Chickpea genetics reduce need for chemicals

0
16


Chickpea genetics reduce need for chemicals
Chiti Agarwal, a chickpea researcher, examines plants in a chickpea disease nursery. Credit: George Vandemark

In recent years, hummus has become a pop culture food phenomenon, drawing praises from dieticians for the health benefits and chefs for the flavor.

However, the core ingredient, the chickpea, has had its production threatened.

The chickpea has played a significant role in the vegetarian diet for thousands of years. It is high in protein and rich in important carbohydrates and minerals.

Grown in the Pacific Northwest and Northern Plains of the United States, the chickpea has an integral role in the agriculture systems of these regions. Recently this role has been threatened by a soil-born water mold, Pythium ultimum.

George Vandemark and his team have worked to improve chickpea varieties and develop new ways to control disease in legumes. Their research was recently shared in Crop Science, a publication of the Crop Science Society of America.

“For over 30 years, common pathogens in chickpeas and other legumes have been controlled by fungicides,” says Vandemark. “We discovered this approach was not working effectively when one of my coworkers visited a field where seedlings had not emerged.”

The planted seeds died shortly after they started to germinate. As the seed grew to the top of the soil, the disease attacked the plant and killed it.

Chickpea genetics reduce need for chemicals
Researchers conducted a field trial with chickpea plants to identify natural sources of resistance to Pythium ultimum. Credit: George Vandemark

To identify the cause, researchers isolated the chickpea seeds in the soil. They discovered that the pathogen P. ultimum developed resistance to fungicide. This resistance allowed the mold to infect the plant.

“Our approach looked at two different types of chickpeas—kabuli and desi,” says Vandemark. “The kabuli chickpea is almost exclusively grown in the United States because of the large export market.”

Kabuli chickpeas are larger, have a clear or light beige seed coat, and are typically canned and used to make hummus. Desi is smaller, has a colored seed coat, and is used for making stews.

The researchers examined different lines of the chickpea to identify natural sources of resistance to P. ultimum.

The most popular varieties of chickpea grown in the United States were susceptible to the disease. The team did discover other chickpea varieties that showed resistance to the soil-born mold.

“We identified many desi chickpeas that were resistant to the pathogen,” said Vandemark. “Luckily, several kabuli also displayed…



Read More: Chickpea genetics reduce need for chemicals

Leave a reply